0=-76/2x^2+150

Simple and best practice solution for 0=-76/2x^2+150 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-76/2x^2+150 equation:



0=-76/2x^2+150
We move all terms to the left:
0-(-76/2x^2+150)=0
Domain of the equation: 2x^2+150)!=0
x∈R
We add all the numbers together, and all the variables
-(-76/2x^2+150)=0
We get rid of parentheses
76/2x^2-150=0
We multiply all the terms by the denominator
-150*2x^2+76=0
Wy multiply elements
-300x^2+76=0
a = -300; b = 0; c = +76;
Δ = b2-4ac
Δ = 02-4·(-300)·76
Δ = 91200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{91200}=\sqrt{1600*57}=\sqrt{1600}*\sqrt{57}=40\sqrt{57}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{57}}{2*-300}=\frac{0-40\sqrt{57}}{-600} =-\frac{40\sqrt{57}}{-600} =-\frac{\sqrt{57}}{-15} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{57}}{2*-300}=\frac{0+40\sqrt{57}}{-600} =\frac{40\sqrt{57}}{-600} =\frac{\sqrt{57}}{-15} $

See similar equations:

| 13-t-13=16-13 | | -5p+-15/5=-4 | | 8=4x=-10+x | | -8=8p | | 8=4x=-10+1x | | x-2/3+4/9=5x/6 | | 8d-4=20d+20 | | 17x-5x-2x=10 | | n/4-23=-18 | | 65-5x=14 | | 12=-3n | | 40=3t-20 | | 8=4x=1x+10 | | 2K+5=-(k+7)-3k | | 15=-6v+3(v-3) | | 5x+4=10x-12 | | (1+x)^9=1.2 | | 8x+8+(−3x)=48 | | 2z+1/7=3z+5/7 | | 9=12-3y | | 2x=-28x+24 | | 9+4x-15/4=7 | | 175m-100m+47,500=50,750-175m | | 2/3x+11=14 | | 3x+7+10x-34=90 | | (X/2.625)+(x/4.875)=1 | | 2x=-28x+34 | | -4/9*(2x-4)=48 | | 103=d+66 | | 4-3x+4=8x-16-4 | | -160=8(-7x-6) | | 11/3b+5=20-b |

Equations solver categories